|
楼主 |
发表于 2021-11-16 14:57:44
|
显示全部楼层
本帖最后由 晚到的约瑟 于 2021-11-16 15:22 编辑
关于曲轴的材料,继续上些资料
关于锻造的作用,以下来自一篇19世纪末的论文
论文前半部分篇幅很长,大致意思我归纳一下是:当时(19世纪末)人们普遍认为,锻造当时的沸腾钢钢材,能将气泡从钢材里挤出,从而改善钢材的性能。由于当时缺乏其他手段,如没有后世生产镇静钢的带有电力buffer的强力脱氧剂,也没有真空冶炼技术,也没不知道氩气对排除钢材内部气体的作用,所有当时的人们坚信:好钢材,夯出来!
锻锤是越造越大!但锤子再大,也有尽头。但出于对“大力出奇迹!”的执迷,最终发展出用液压机获得更大的挤压力,将气泡从钢材里挤出,生产所谓的“压缩钢”的“高科技”!
但论文的作者,对此理论表示怀疑,于是……
it was the case of a compressed-steel Mr. Davis. hydraulic cylinder supplied to him by that firm for making hydraulic presses. There had been great difficulty in obtaining cast-steel cylinders as quickly as they were wanted, and he induced Sir Joseph Whitworth to make a cylinder of his compressed steel on trial. After long delay the cylinder was delivered, and to all appearance it was an excellent piece of work. The metal seemed without a flaw; the cylinder was turned and completed for its work, with the exception of slotting out the heads. Most engineers would know that there were bolt-holes with the heads recessed for putting in the bolts for fastening the gland on the top of the cylinder. During that operation he was sent for to see what had occurred. A piece of metal about 4 inches square had dropped off the head of the cylinder, leaving the surfaces as smooth as glass. Of course the cylinder was useless, and no more of them were made. The impression on his mind, and on the minds of others who saw it, was clearly that there had been a gas-bubble or something of that nature in the casting, and that the effect of the pressure to which the ingot had been subjected was merely to elongate or spread out the gas-bubble over a larger surface, and that immediately the edges of the metal were touched by the slotting tool the piece dropped away. That, he thought, showed conclusively that the system advocated by the Author did not eliminate any flaw that might be in a steel ingot. He should be glad to hear from the Author in what way the flaws were eliminated by pressure from fluid-compressed steel.
这段资料翻译的意思是:
这是一个压缩钢的案例,戴维斯先生,那家公司提供给他的用于制造液压机的液压缸。要想尽快得到所需的铸钢钢瓶,困难重重,他诱导约瑟夫·惠特沃思爵士用他的压缩钢做了一个钢瓶进行试验。经过长时间的拖延,气缸终于交付,从外观上看,这是一件出色的作品。金属似乎没有瑕疵;气缸被转动并完成其工作,除了开槽的头部。大多数工程师都知道,气缸顶部有螺栓孔,螺栓孔的头部凹陷,用于安装用于紧固压盖的螺栓。在那次行动中,他被要求去看看发生了什么。一块约4平方英寸的金属从气缸盖上脱落,使表面光滑如玻璃。当然,圆筒是无用的,再也没有了。他和其他看到它的人的脑海中的印象显然是铸件中有一个气泡或类似性质的东西,铸锭所承受的压力的作用只是将气泡拉长或扩散到更大的表面上,金属的边缘被开槽工具一碰,金属片就掉了下来。他认为,这最终表明,作者(这个作者指提出“压缩钢”概念的作者)倡导的制度并没有消除钢锭中可能存在的任何缺陷。他应该很高兴从作者那里听到这些缺陷是如何通过流体压缩钢的压力消除的。
作者举的实际例子,讽刺了所谓的“压缩钢”其实“然并卵”
In his opinion, the strength of steel, taking tenacity and ductility together, was not dependent, as commonly supposed, upon the work put upon it. This had been his view for many years, and had been amply proved. He had arrived at this conclusion from a study of the laws of crystallization, and treating steel passing from the fluid to the solid state as subject to those laws. The finer the state of crystallization, so much greater would be the cohesive action,and when this state of maximum cohesion of the crystals had been arrived at, whether in the initial stage of casting or during the manufacture of the material to the finished article, no amount of work, either by forging or other mechanical means, made it stronger.
在他(论文作者)看来,钢的强度,包括韧性和延展性,并不像人们通常认为的那样,取决于所施加的功。这是他多年来的观点,并得到充分证明。他通过对结晶规律的研究得出了这一结论,并将钢从流体状态转变为固体状态视为遵循这些规律。结晶状态越精细,内聚作用就越大,而当晶体达到这种最大内聚状态时,无论是在铸造的初始阶段,还是在将材料制成成品的过程中,无论是通过锻造还是其他机械手段,都无法使其更坚固。
为了说明这一点,论文作者进行了一系列测试。其中包括将一块4.5英寸的铸锭用普通方法铸造(沸腾钢工艺),然后切成三块。第一件,不使用任何机械手段进行处理,与复杂的铸钢件相同;第二个锻造成 1.25 英寸见方,第三个同样锻造,然后退火,以便与第一个进行公平比较,第一个也是退火的。通过比较测试结果,发现锻造但未退火的工件比第一个具有更高的抗拉强度,但延展性更低,但是当退火时,两者几乎没有区别,或者,如果有的话,未锻件钢铁更有优势。这最清楚地表明,除了机械方法外,其他方法也可以获得相同的结果,锻造的结果是以牺牲延展性为代价提高抗拉强度。
对曲轴工件,曲轴面临的主要应力来自扭曲应力而非拉伸应力,所以作者认为锻造的确是一种便宜的加工曲轴方式,但不是唯一的,也不是万能的。铸造工件也能获得和锻造工件一样的性能。而当工件尺寸越来越大时,铸造工件往往可以优于锻造的工件。
以上资料来源
The treatment of steel by hydraulic pressure and the plant employed for the purpose 1889
Author
Greenwood, William Henry
另一份有趣的资料中(《远洋船机械的设计手册》 1895年版 第九章 曲轴)则是这么说的
For wrought iron f should not exceed 9000 lbs., and when the shafts are more than 10 inches diameter 8000 lbs. is the highest stress to which the iron should be subjected. Steel, when made from the ingot and of good materials, will admit of a stress of 12,000 lbs. for small shafts, and 10,000 lbs. for those above 10 inches diameter. If forged from scrap mild steel, such as used for boiler and ship plates, f should not exceed 9000 lbs. for the large shafts, and 10,500 for small ones. The difference in the allowance between large and small shafts is to compensate for the defective material observable in the heart of large shafting, owing to the hammering failing to affect it.
对于锻铁 f 不应超过 9000 磅,当轴的直径超过 10 英寸时为 8000 磅。是铁应承受的最高应力。当钢由铸锭和优质材料制成时,小轴承受12000磅的应力,直径大于10英寸的轴承受10000磅的应力。如果用废软钢锻造,如用于锅炉和船板,大型轴的f不应超过9000磅,小型轴的f不应超过10500磅。
材料中令人惊讶的是:越大的锻造工件耐受的应力越小!大轴和小轴之间的余量差异是为了补偿在大轴系中心缺陷材料。那个年代,沸腾钢的钢锭越大,中心残存的气泡其实越多。而大锤子根本无法排除这些气泡,就造成了轴越大性能可能越差的情况,工程上就要降低大直径轴的耐受的应力来设计,以提高整个传动系统的可靠性。
曲轴的应力分析,三涨蒸汽机曲轴的主要应力是扭曲应力的结论,也是来自这本设计手册。
和一般想象的不同,锻造也会对钢材性能造成负面影响,在大轴上尤其显现。
图 93 显示了曲轴中的三种典型宏观结构。
第一个示例 (a) 具有直纹,其中轴颈、曲柄销和颊部的纤维均平行。这代表了由锻造坯料加工而成的曲轴,其横截面略大于曲柄销外部的整体尺寸。在这种尺寸的钢坯中,很可能会在曲轴的不同部分发现机械性能的明显变化。例如,轴颈自然取自钢坯中心,因此可能具有一些最有可能不健全的原始钢锭结构。因此在锻造后其与外部附近晶体之间没有连续性。第二个例子 (b) 是一个蛇形纹理结构,它代表了一个经过大量锻造的曲轴。虽然纤维通常遵循曲轴的轮廓,但纹理非常不规则。不过,这种结构优于具有直纹的第一个例子。(c) 中显示的第三种纤维结构比前两个示例中的任何一个都具有更连续或更完整的纹理,通过工程经验发现,这肯定更好。出于一种原因,与纤维末端暴露时相比,纤维与表面平行的轴颈或曲柄销的磨损趋势更小。铸造钢锭,并经过良好的热处理,可以得到这种良好的“纤维”结构。
不过沸腾钢很难浇铸出啥好的钢锭,所以现阶段元老院估计还得靠大力出奇迹。靠谱的好钢锭还是要指望镇静钢。
再说说沸腾钢和镇静钢
“沸腾钢比镇静钢强的地方就是夹杂物少,钢水沸腾过程中会把夹杂物带上来。”这样的概念是不对的。镇静钢工艺过程中一样也有沸腾阶段,也会造渣排杂;同样的沸腾钢也不是不脱氧,同样有脱氧阶段,只是在19世纪用的脱氧剂是不依赖电就能生产的锰铁和低牌号硅铁,无法像镇静钢那样做到完全脱氧。
所以,镇静钢不但杂质少,气孔少,而且结构致密均匀,偏析不严重,各方面性能都是超过沸腾钢的。但就是用的脱氧剂有电力buffer,一定是比沸腾钢贵的。
我呢,还是比较嫌弃沸腾钢。沸腾钢是元老院缺电状况下的产物,不得已的瓜代菜,当电力充足而廉价的电气时代降临,元老院一定会像历史上对镇静钢和沸腾钢做出的选择一样,大多钢材用镇静钢,沸腾钢只是因为便宜,被生产用在轧制板材和要求不高的结构钢上。
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
x
|